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A generalized Noether’s theorem and the operational determination of a physical geo-
metry in quantum physics are used to motivate a quantum geometry consisting of
relations between quantum states that are defined by a universal group. Making these
relations dynamical implies the nonlocal effect of the fundamental interactions on the
wave function, as in the Aharonov–Bohm effect and its generalizations to non-Abelian
gauge fields and gravity. The usual space–time geometry is obtained as the classical
limit of this quantum geometry using the quantum-state space metric.

1. INTRODUCTION

The space–time geometry that is commonly used today arose from classical
physics. An interesting question is what geometry is appropriate for quantum
physics. It was suggested that the universal symmetry group elements that act on
all Hilbert spaces may be appropriate for constructing a physical geometry for
quantum theory (Anandan, 1980). I also proposed the systematic study of all the
fundamental interactionsoperationallyfrom their effects on quantum interference
(Anandan, 1979). The purpose of this paper is to attempt to bring together these
two approaches. The modular variables introduced by Aharonovet al.(1969) will
play a useful role in this.

In Section 2, I shall review Noether’s theorem and its converse in a generali-
zed form in which the conserved quantities are elements of a group and not the
generators of this group as usually stated. This will suggest a quantum geometry by
relations defined by the universal group elements, which constitute the symmetry
group of physics, that act on all Hilbert spaces, as discussed in Section 3. The clas-
sical limit of this geometry will be obtained in Section 4 as the usual space–time
geometry from the quantum-state metric in Hilbert spaces and the universality
of the action of the translational group in every Hilbert space. In Section 5, the
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nonlocality of fundamental interactions in quantum physics implied by this ap-
proach, as shown physically by the Aharonov–Bohm effect (Aharonov and Bohm,
1959) and its generalizations (Anandan, 1979; Wisnievesky and Aharonov, 1967),
will be studied. The study of the gravitational Aharonov–Bohm effect around a
cosmic string in particular suggests that the use of universal group elements as
quantum distances may be appropriate.

2. SOME REFLECTIONS ON NOETHER’S THEOREM

The usual statement of Noether’s theorem is that for every continuous sym-
metry of the equations of motion (determined by the Lagrangian or Hamiltonian)
there exists a conserved quantity. Although this is easy to prove, the meaning of
this theorem is more readily evident in the Hamiltonian than in the Lagrangian
formulation. A symmetry of the equations of motion or time evolution is a transfor-
mationssuch that in any experiment ifs is applied to the initial state of the physical
objects (fields, particles, etc.) participating in the experiment then the final state
of the transformed experiment must be the same ass applied to the final state of
the original experiment. For example, spatial translational symmetry implies that
if the apparatus is translated to a new spatial location then the same experiment
should give the same result.

SupposeU is the time-evolution operator, andψi andψf are the initial and
final states, i.e.ψf = Uψi . Then the above definition ofs being a symmetry of the
time evolution is

sψ f = Usψi

for every initial stateψi . This is equivalent to the commutator

[U, s] = 0. (1)

But (1) states also thats is conserved during the time evolution. Therefore, the
statements thats is a symmetry and thats is conserved are thesamestatement (1),
and there is nothing to prove!

Now suppose that there is a continuous symmetry generated byQ. Then (1)
is satisfied withs= exp(i Qq) for all q, and therefore

[U, Q] = 0. (2)

Hence, Q is conserved, which is Noether’s theorem. Furthermore, if the
Hamiltonian H is independent of timet , as it is for an isolated system, then
U = exp(− i

h Ht). If (2) is valid for all t , then

[H, Q] = 0. (3)

The above results may be extended to classical physics by turning the above
commutators into Poisson brackets in classical phase space. These classical results
may be regarded as the classical limit of the quantum results by recognizing that
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the symplectic structure that gives the Poisson brackets are the classical limit
(Anandan, 1990, 1991) of a symplectic structure in quantum theory (Kibble, 1979)
that gives the commutators.

But the conservation ofs that follows from (1) is more general than the usual
form of Noether’s theorem. There are at least two situations in which (1) is valid but
there are no corresponding (2) or (3). First, as is well known, in both classical and
quantum physics,s may be a discrete symmetry instead of a continuous symmetry.
For example,s may be parity, which is a symmetry and therefore conserved for all
interactions except the weak interaction, as far as we know. Another example is
that (1) is satisfied fors= exp(i Qqk) for a discrete set of valuesqk only. Second,
in quantum physics the mean value ofs= exp(i Qq) has more information than
the mean value of all the moments ofQ, namelyQn wheren is any positive integer
(Aharonovet al., 1969). This is unlike in classical physics where the mean value
of a transformation generated byQ may be obtained using the mean values of all
the Qn. Both these situations will be considered in Section 5.

Since in (1)U ands occur symmetrically, it follows that the converse of the
generalized Noether’s theorem is also true:A transformation s that is conserved
must be a symmetry of the equations of motion. The usual view is thatU is more
fundamental thans becauseU is determined by the dynamical laws, which are
regarded as primary, whereas the symmetries such ass are obtained secondarily
as the symmetries of these laws. But the concise form (1) of the connection
between the dynamical laws and symmetries, in whichU andsare on an equivalent
footing, suggest that we may equally turn the usual view around and regard the
transformations{s} as primary andU as derived from them to satisfy (1) so that{s}
are the symmetries (Anandan, 1999). The possibility of regarding symmetries as
fundamental relations between quantum states by associating them with a quantum
geometry will be explored in the next section.

3. QUANTUM GEOMETRY

The concept of space originates from our common experience of translating
objects and from the possible states they can occupy. If we translate a cup, for
example, in various possible ways, classically we may say that the different con-
figurations or states of the cup are “immersed” in “space.” This space isuniversal
in the sense that it is regarded as independent of the objects “contained” in it.

But quantum mechanically it is not clear what is meant by the cup being
“immersed” in space. The cup consists of electrons, protons, and neutrons (or the
quarks and gluons that make up the protons and neutrons), and the states of these
particles belong to the corresponding Hilbert spaces different from the physical
space or the phase space of classical physics. The translation of a cup therefore
needs to be represented by the corresponding translation operators that act on these
Hilbert spaces. The fact that all the particles constituting the cup move together in
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some approximate sense suggests the introduction of universal translation group
elements that are represented by operators that act on each Hilbert space. It is this
universalityof the translation group that gives us the concept of “space” that is
independent of the particular system that partakes in it.

Also, it is well known that we cannot operationally determine the metric
in space–time, or even the points of space–time, using quantum probes (Wigner,
1967) because of the uncertainty principle. If one tries to obtain the space–time geo-
metry using a clock and radar light signals, which is possible in classical physics
(Synge, 1960), the uncertainty in the measurement of time in quantum physics is
approximately equal toh/1E, where1E is the uncertainty in the energy of the
clock. If we try to decrease this uncertainty by increasing1E, then this increases
the uncertainty in the geometry of space–time due to the uncertainty in the gravi-
tational field of the clock. The total uncertainty in the measurement of space–time
distances is thenhc/1E + 2G1E/c4. The minimum value of this uncertainty as
1E is varied is approximately the Planck length=

√
Gh/c3. Hence, space–time

geometry is only approximately valid in quantum theory, with an uncertainty of
the order of Planck length.

However, a geometry for quantum theory may be defined by relations deter-
mined by a universal groupS, which generalizes the above translation group. This
is universal in the sense that the sameShas a representation in each Hilbert space.
But S may have subgroups that may have trivial representations in some Hilbert
spaces but not in others. An object may be displaced by anys ∈ S, which means
thats acts on each of the Hilbert spaces of the particles or fields constituting that
object through the corresponding representation ofS. Eachψ in each of these
Hilbert spaces is mapped to a correspondingψs by this action ofs, and the group
elements that determines therelation betweenψ andψs is independent of the
Hilbert space and is therefore universal. In the example of a cup considered above,
s is an element of the translation group,ψ andψs are the states of each particle
constituting the cup before and after the translation, and the relation between each
such pair is universal in the sense that the entire cup has undergone this translation,
or any other object that could take the place of the cup. This quantum geometry
cannot be subject to the above criticisms of the space–time geometry because the
action ofSon each Hilbert space is not subject to any uncertainty.

It is reasonable to require that this geometry is preserved in time in the ab-
sence of interactions. Then eachs ∈ S is conserved and the converse of Noether’s
theorem stated in the last paragraph of the previous section implies thats is also a
symmetry of the time evolution. Since the evolution equations are now determined
by the standard model,Smay be the symmetry group of the present-day standard
model, namelyP ×U (1)× SU(2)× SU(3), whereP is the Poincare group. But
if the standard model is superseded by new physics that has a different symmetry
group thenS should be this new group, and the above statements would all be
unaffected.
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As an illustration of the geometrical relations proposed here, consider the ex-
perimentally known quantization of electric charge: all known charges are integral
multiples of the fundamental chargee0. An aspect of this is that the magnitudes of
the charges of the electron and the proton are experimentally known to be equal to
an amazing precision. To obtain charge quantization, takes above to be an arbi-
trary element of the electromagneticU (1) group, which is a subgroup ofS. This
universalU (1) group is a circle parametrized by3, say, that varies from 0 to30

so that 0 and30 represent the same point on this group, chosen to be the identity.
SinceU (1) is Abelian, it has only one-dimensional representations. Hence the
action ofs(3) on an arbitrary state gives

ψs = exp(i Q3)ψ, (4)

whereQ corresponds to a particular representation ofU (1) in the Hilbert space in
whichψ belongs to. But sinces(30) = s(0), which is because of the compactness
of theU (1) group, exp(i Q30) = 1 for all representations (Yang, 1970). Hence,
Q30 = 2πn or

Q = n
2π

30
, (5)

wheren is an integer.
To interpretQ, consider the physical implementation of the transformations.

This may be done by sending each of the particles through the same electromagnetic
field with four-vector potentialAµ in a particular gauge so that the effect of the
electromagnetic field alone on the particle is given by

ψs = exp

(
−i

q

hc

∫
Aµ(x) dxµ

)
ψ, (6)

which is aU (1) transformation. Indeed, the statement that the electromagnetic
field is aU (1) gauge field may be taken to mean that it is physically possible to
implement aU (1) gauge transformation using the electromagnetic field in this
way. Thenq has the interpretation of the electric charge. Comparing (6) with (4),
we may take3 to be

∫
Aµ dxµ, in which caseQ = q/hc. Hence, from (5),

q = n e0, (7)

wheree0 = 2πhc/30 is a universal constant that is determined experimentally
to be 1

3e, wheree is the charge of the electron. The exact equality of the mag-
nitudes of the charges of the electron and the proton may now be understood as
due to them belonging to representations corresponding ton = 3 andn = −3,
respectively.

The above argument also provides a reason for the introduction of Planck’s
constant, which is purely geometrical. The exponent in (6) must be dimensionless
because the expansion of the exponential has all powers of the exponent. Now,
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q
c

∫
Aµ dxµ is meaningful in classical physics. But to turn it into a dimensionless

quantity, it is necessary to introduce a new scale, which is provided byh. From
the present point of view, this is needed in order to physically implement theU (1)
group elements that define relations between states that are part of the quantum
geometry. Also, from (7),q is proportional toe, andAµ is also proportional toe
because the charges that generateAµ via Maxwell’s equations are proportional toe.
Hence, the exponent in (6) is proportional to the fine-structure constante2/hc. This
argument may be extended to gauge fields in general, and dimensionless coupling
constants are obtained for all of them. From now on, units in whichc = 1 will be
used, and the metric convention is (+,−,−,−).

The relation defined by (6) is not gauge-invariant. Hence, it cannot be used
to define an invariant geometrical “distance.” Consider again the translation of
a cup that may be performed by acting on all the quantum states of the parti-
cles constituting the cup by a universal group element exp(− i

h p̂`), wherep̂ is a
generator of translation. The action of this group element on a wave function is
also not gauge-invariant. But we may combine the two transformations to define
the gauge-covariant transformationψ`(x) = f`(x)ψ(x), wherex stands forxµ or
equivalently (x, t), and2

f`(x) = exp

(
− i

h
p̂ · `

)
exp

{
i
q

h

∫ x+`

x
A(y, t) · dy

}
(8)

where at present the integral is taken along the straight line joiningx = (x, t) and
(x+ `, t) for simplicity. Then, clearly,

f`(x) = exp

{
i
q

h

∫ x

x−`
A(y, t) · dy

}
exp

(
− i

h
p̂ · `

)
. (9)

It is easy to show, using (8) and (9), that the set of operators{ f` | ` ∈ R3} is a
group under multiplication.

From (8), under a gauge transformation,ψ ′(x) = u(x)ψ(x), whereu(x) =
exp{i q

h3(x)}, andA′µ(x) = Aµ(x)− ∂µ3(x), f` transforms to

f ′`(x) = exp

(
− i

h
p̂ · `

)
u(x+ `, t) exp

{
i
q

h

∫ x+`

x
A(y, t) · dy

}
u(x, t)

On using

exp

(
− i

h
p̂ · `

)
u(x+ `, t) = u(x, t) exp

(
− i

h
p̂ · `

)
(10)

2 The action of exp(− i
h p̂ · `) = exp(−` · ∇) on an analytic wave functionψ may be understood as the

usual Taylor expansion ofψ . If ψ is not analytic, then exp(− i
h p̂ · `) acts on the momentum space

wave functionψ̃ according toψ̃(p, t)→ exp(− i
h p · `)ψ̃(p, t). In either case, we obtain exp(− i

h p̂ ·
`)ψ(x, t) = ψ(x− `, t).
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it follows that

f ′`(x) = u(x, t) exp

(
− i

h
p̂ · `

)
exp

{
i
q

h

∫ x+`

x
A(y, t) · dy

}
u†(x, t)

= u(x) f`(x)u†(x). (11)

Hence, f` acts gauge-covariantly on the Hilbert space.
f` may also shown to be gauge-covariant from the fact that

〈ψ | f`|ψ〉 =
〈
exp

(
i

h
p · `

)
ψ

∣∣∣∣ exp

{
i
q

h

∫ x+`

x
A(y, t) · dy

}
|ψ〉

=
∫

d3xψ†(x+ `, t) exp

{
i
q

h

∫ x+`

x
A(y, t) · dy

}
ψ(x, t) (12)

is gauge-invariant because the integrand is gauge-invariant (Anandan, 1986). It also
follows from (12) that the operator (8) is observable. For example, in the Josephson
effect, where the current depends on the gauge-invariant phase difference across
the junction, if̀ is chosen to be the vector across the junction thenf` is observable
from the current (Anandan, 1986).

A gauge may be chosen, even if the field strength is nonvanishing—so that the
component ofA in the direction of̀ is zero. Then in this gaugef` = exp(− i

h p̂ · `),
which is conserved for an isolated system. Sincef` is gauge-covariant, it follows
that (8) is conserved for an isolated system in every gauge.f` is a gauge-covariant
generalization of the modular momentum (Aharonovet al., 1969), and may be
called the modular kinetic momentum. When two systems interact, there would
be an exchange of modular kinetic momentum. Indeed, this may be regarded as
the definition of two systems interacting (Anandan, 1999). As will be seen in
Section 5, this exchange may happen even when there are no forces between
the two systems, which makes the latter interaction more general than the usual
interaction via forces. If̃ψ is the momentum space wave function ofψ , then clearly

〈ψ | exp

(
− i

h
p̂ · `

)
|ψ〉 =

∫
d3 p|ψ̃(p, t)|2 exp

(
− i

h
p · `

)
. (13)

Hence, the change in〈ψ | exp(− i
h p̂ · `)|ψ〉 results in a change in the distribution

of the probability density|ψ̃(p, t)|2 of momentump (Aharonov, private commu-
nication). Since in the above gauge the gauge-invariant〈ψ | f`|ψ〉 is the same as
(13), it follows that, in an arbitrary gauge, an interaction results in a change in the
distribution of the gauge-invariant kinetic momentump− qA.

Similarly, the modular energy (Aharonovet al., 1969) may be generalized
gauge-covariantly as follows. Define the transformation on the Hilbert spacefτ
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byψτ (x) = fτ (x)ψ(x), where

fτ (x) =
{

T exp

(
− i

h

∫ t+τ

t
H dt

)}†
exp

{
−i

q

h

∫ t+τ

t
A0(x) dt

}
(14)

and T denotes time ordering. To prove thatfτ is gauge-covariant under the
above gauge transformation, note first that for a solutionψ(x, t) of Schrödinger’s
equation,

ψ(x, t + τ ) = T exp

(
− i

h

∫ t+τ

t
H dt

)
ψ(x, t). (15)

Therefore, under the gauge transformationψ ′(x, t) = u(x, t)ψ(x, t),

ψ ′(x, t + τ ) ≡ u(x, t + τ )ψ(x, t + τ ) = u(x, t + τ )

× T exp

(
− i

h

∫ t+τ

t
H dt

)
u†(x, t)ψ ′(x, t)

using (15). Hence,

u(x, t + τ )T exp

(
− i

h

∫ t+τ

t
H dt

)
u†(x, t) = T exp

(
− i

h

∫ t+τ

t
H ′ dt

)
,

whereH ′ is the gauge-transformed Hamiltonian. The last equation is equivalent
to {

T exp

(
− i

h

∫ t+τ

t
H ′ dt

)}†
u(x, t + τ )

= u(x, t)×
{

T exp

(
− i

h

∫ t+τ

t
H dt

)}†
. (16)

Under this gauge transformation,fτ (x) transforms to

f ′τ (x) ≡
{

T exp

(
− i

h

∫ t+τ

t
H ′ dt

)}†
exp

{
−i

q

h

∫ t+τ

t
A′0(x) dt

}

=
{

T exp

(
− i

h

∫ t+τ

t
H ′ dt

)}†
u(x, t + τ )

× exp

{
−i

q

h

∫ t+τ

t
A0(x) dt

}
u†(x, t)

= u(x, t) fτu
†(x, t) (17)

on using (16). Hence,fτ acts gauge-covariantly on the Hilbert space.
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More generally, for an arbitrary gauge field the above arguments hold with
eAµ replaced byg0Ak

µTk, whereTk generate the gauge group, andu(x) is the corre-
sponding local gauge transformation. The gauge field exponential (parallel trans-
port) operator will be generalized to be along an arbitrary piecewise-differentiable
curve γ̂ in R4. Path ordering is necessary because{Tk} do not commute in
general. The energy–momentum operatorp̂µ is defined byp̂0 = H, p̂i = i h ∂

∂xi .
Now define the transformationgγ on the Hilbert space byψγ (x) = gγ (x)ψ(x),
where

gγ (x) = P exp

(
− i

h

∫
γ̄

p̂µ dyµ
)

P exp

{
−i

g0

h

∫
γ

Ak
µ(y)Tk dyµ

}
, (18)

with P denoting path ordering, andγ is a curve in space–time that is congruent
to γ̂ while γ̄ is the curveγ traversed in the reverse order. In (18),γ begins atx
and ends atx + `, where`µ is a fixed vector (independent ofxµ), andγ̄ therefore
begins atx + ` and ends inx. Then

P exp

(
− i

h

∫
γ̄

p̂µ dyµ
)
=
{

P exp

(
− i

h

∫
γ

p̂µ dyµ
)}†

. (19)

Under a local gauge transformation, (18) transforms to

g′γ (x) ≡ P exp

(
− i

h

∫
γ̄

p̂′µ dyµ
)

P exp

{
−i

g0

h

∫
γ

A′kµ (y)Tk dyµ
}

= P exp

(
− i

h

∫
γ̄

p̂′µ dyµ
)

u(x + `)

× P exp

{
−i

g0

h

∫
γ

Ak
µ(yµ)Tk dyµ

}
u†(x), (20)

wherep̂′0 = H ′, p̂′i = p̂i = i h ∂
∂xi . Now write P exp(− i

h

∫
γ̄

p̂′µ dyµ) as a product of
infinitesimal exponentials of the form (1− i

h pj dyj )(1− i
h p′0 dy0), and use (10)

and (16) in their infinitesimal forms. Then (20) implies

g′γ (x) = u(x)P exp

(
− i

h

∫
γ̄

p̂µ dyµ
)

P exp

{
−i

g0

h

∫
γ

Ak
µ(y)Tk dyµ

}
u†(x)

= u(x)gγ (x)u†(x). (21)

Hence, the operatorgγ acts gauge covariantly on the Hilbert space. It follows from
this proof thatgγ would be gauge-covariant also when ¯γ in (18) is replaced by
any piecewise-differentiable curve that would connectx + ` to x.



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp345-ijtp-364904 January 22, 2002 16:36 Style file version Nov. 19th, 1999

208 Anandan

Also, on using (19),

〈ψ |gγ |ψ〉 =
〈
P exp

(
− i

h

∫
γ

p̂µ dyµ
)
ψ

∣∣∣∣ P exp

(
−ig0

∫
γ

Ak
µTk dyµ

)
|ψ〉

=
∫

d3xψ†γ (x + `)P exp

(
−ig0

∫
γ

Ak
µTk dyµ

)
ψ(x), (22)

whereψγ (x + `) ≡ P exp(− i
h

∫
γ

p̂µ dyµ)ψ(x). The expectation value (22) is
gauge-invariant because the integrand is gauge-invariant. It may be observable,
in principle, by the Josephson effect for a non-Abelian gauge theory proposed
in (Anandan, 1986). More experimental consequences ofgγ will be discussed in
Section 5.

The energy–momentum operatorp̂µ may be generalized to relativistic quan-
tum field theory by defining its components as the conserved quantities obtained
via Noether’s theorem from the invariance of the Lagrangian under space–time
translations:

p̂µ =
∫

d3x T̂µ0, (23)

whereT̂µv is the conserved, normal-ordered energy–momentum tensor. Then the
canonical commutation relations imply thatp̂µ generates space–time translations.
It therefore follows from arguments analogous to the above thatgγ , given by (18)
with the quantum field theoretiĉpµ, is gauge-covariant. Sincêpµ transforms as a
covariant vector under Lorentz transformations, it also follows thatgγ is Lorentz-
invariant. Moreover,gγ may be generalized to curvesγ in Rn (n is any positive
integer), which would correspond to ann-dimensional space–time.

It may be reasonable to takegγ as a quantum distance that replaces the
classical space–time distance along the curveγ . But to do so it would be necessary
to obtain the classical distance in an appropriate limit fromgγ , which will be studied
in the next section.

4. CLASSICAL LIMIT

To take the classical limit of this geometry, note that classical space–time
is constructed with measuring instruments consisting of particles that have ap-
proximate position and momentum. It is therefore reasonable to represent them by
Gaussian wave packets, which have minimum uncertainty. For a particle with mean
position at the origin and mean momentum zero, the normalized wave function of
such a state up to an arbitrary phase factor is

ψ0(x) = (2π1x2)−1/4 exp

(
− x2

41x2

)
, (24)
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where1x is the uncertainty in position. This may be a state of a molecule in the
cup, mentioned in Section 3, in a harmonic oscillator potential in which case it
would not spread. As the cup is displaced, the above wave function becomes

ψ`(x) ≡ exp

(
− i

h
p̂ · `

)
ψ0(x) = (2π1x2)−1/4 exp

(
− (x− `)2

41x2

)
(25)

up to a phase factor.
In (8) the second factor may be made the identity by choosing a gauge in

which A · ` = 0. Therefore, exp(−i p̂ · `) may be regarded as a special case of
(8) or (18), and hence as defining a quantum distance between the statesψ0 and
ψ`. We may therefore expect a metric to be defined on the translation group to
which this operator belongs and use that to define a metric in space. But this group,
being Abelian, has no natural metric on it. There are two ways, however, that a
metric may be defined on it. One is to use the Casimir operator of the Poincare
group,ηabPa Pb, to define a metric on it, which locally may be associated with
the space–time metric (Anandan, 1980). The other method, which will be used
here, is to utilize the overlap of the two wave functions to obtain a measure of
the displacement between them, which would then give an equivalent metric in
the translation group. This is possible if the space of wavefunctions on which this
group acts has an inner product, which would give a measure of the overlap and
therefore how far a state has been translated.

Such a measure is given by the Fubini–Study metric in the quantum state
space, or the set of rays, of every Hilbert space. This is the unique metric, up
to multiplication by an overall constant, that is invariant under unitary (and anti-
unitary) transformations. This may therefore be written in the form (Anandan,
1990, 1991; Anandan and Aharonov, 1990; Provost and Vallee, 1980)

dS2 = 4(1− |〈ψ | ψ ′〉|2), (26)

wheredSis the infinitesimal distance between two neighboring states (rays) repre-
sented by normalized state vectorsψ andψ ′. Clearly,dSis zero when the states are
the same, and it increases when the overlap between the states decreases. It is also
invariant under unitary transformations, and must therefore be the Fubini–Study
metric. The factor 4 in (26) is just a convention which ensures that this metric in
the state space of the Hilbert subspace spanned byψ andψ ′ is the metric on a
sphere of unit radius.

Now substituteψ`(x) andψ`+d`(x) asψ andψ ′ in (26). Then,

dS2 = d`2

1x2
, (27)

neglecting higher order terms ind` because it is infinitesimal. Henced`2, which is
the same for all Hilbert spaces, may be used as a metric on the three-dimensional
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translational group parametrized by the components of the vector`. Locally, this
metric may be regarded as a metric in the physical space of classical physics.

This result may be generalized to an arbitrary stateψ as follows. Require that
〈ψ | ψ ′〉 be close to the identity, where

ψ ′(x) ≡ exp

(
− i

h
p̂ · d`

)
ψ(x). (28)

Therefore expand

〈ψ | ψ ′〉 '
〈
ψ

∣∣∣∣ (1− i

h
p̂ d`− 1

2h2 p̂2 d`2

)
ψ

〉
= 1− i

h
〈ψ |p|ψ〉d`− 1

2h2 〈ψ |p2|ψ〉d`2, (29)

wherep̂ is the momentum component in the direction ofd`. Substituting this in
(26),

dS2 = 41p2

h2 d`2, (30)

where1p is the uncertainty inp:1p2 = 〈ψ |p2|ψ〉 − 〈ψ |p|ψ〉2. For the Gaussian
wave packet,1p1x = h/2, and therefore (30) gives (27) in this case.

Time is measured by a clock. Since the clock must have moving parts, the
uncertainty1E of its HamiltonianĤ must be nonzero. Neglecting any external
interaction of the clock,Ĥ is a constant. The infinitesimal time evolution of the
the clock is given by

|ψ(t + dt)〉 = exp

(
− i

h
Ĥ dt

)
|ψ(t)〉. (31)

The Fubini–Study distancedS along the evolution curve in the quantum state
space corresponding to|ψ(t)〉 is obtained analogous to the derivation of (30) to be
(Anandan, 1990, 1991; Anandan and Aharonov, 1990)

dS2 = 41E2

h2 dt2. (32)

A quantum clock directly measures the Fubini–Study ditanceS and the timet is
then inferred fromSusing (32). The appearance of the samet in (32) in all Hilbert
spaces is due to the universality of the action of the time translation exp(i

h Ĥ dt)
in every Hilert space. This is analogous to the universality of the spatial displace-
ments, which was used earlier to obtain the spatial metric.

The spatial translation (28) and the active time translation corresponding to
(31) may be written covariantly as

ψ ′ = exp

(
i

h
p̂µ d`µ

)
ψ0, (33)
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whered`µ = (cdt, d`). This transformation is the infinitesimal version of (18) in
a special gauge that makes the second factor in (18) the identity.3 In an arbitrary
gauge, the same space and time metrics are obtained by replacing the operator in
(33) with the infinitesimal version of (18) in the above treatment. In relativistic
quantum theory, owing to the transformation property ofp̂µ mentioned at the
end of Section 3, these metrics give a space–time metric that is invariant under
Lorentz transformations. In the presence of gravity, this Lorentzian metric may
be obtained locally by doing the above space–time translations in a freely falling
Einstein elevator, which then globally gives a curved pseudo-Riemannian metric.

5. INTERACTIONS AND THE NONLOCALITY
OF QUANTUM THEORY

If the quantum geometry is determined by relations between states that are
group elements, and if these group elements, which are our observables, are made
dynamical the way Einstein made space–time distances dynamical in order to ob-
tain gravity, then this would give both gravity and gauge fields (Anandan, 1999).
Also, quantum mechanics has an inherent nonlocality, which may also be under-
stood as due to these group elements being the basic observables. The combination
of these two statements imply that gauge fields and gravity should affect quan-
tum states in a nonlocal manner as in the Aharonov–Bohm effect (Aharonov and
Bohm, 1959), as will be discussed later.

First consider the nonlocality of quantum theory, which may be illustrated
by the following example: Electrons with initial momentum in thex direction go
through an infinite diffraction grating in theyz plane of a Cartesian coordinate
system, with the length of the slits along thez direction. Then the grating destroys
continuous translational symmetry for the electrons in they direction. However,
if the distance between successive slits in they direction is` thens= exp(−i p`

h )
satisfies (1), wherep is the momentum operator for electrons in they direction,
which generates translations in they direction. (For simplicity, here and henceforth,
the circumflex ( ˆ ) over operators is omitted). Hence, it follows from the generalized
Noether’s theorem in Section 2 that exp(−i p`

h ) is conserved althoughp is not
conserved. Indeed, it is well known that the interference fringes on a screen that is
parallel to and far away from theyzplane is given bỳ sinθn = nλ, whereλ is the
wave length andn is an integer. Therefore, the possible values of the momentum
for an electron in they direction after the interaction arepn = h

λ
sinθn = nh

`
, i.e.

exp(−i pn`

h ) = 1. Hence, exp(−i p`
h ) is conserved during the passage of electrons

through the grating.
The above operators is equivalent to the modular momentump(modh

`
)

introduced by Aharonovet al. (1969) on the basis of the above example. But

3 If d`µ is alongγ thendyµ = −d`µ because ¯γ is the reversal ofγ .
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here I shall treats as an element of a universal group that is used to define a quan-
tum geometry as in Section 3.s may be obtained from experiments by measuring
the Hermitian observables

sR ≡ 1

2

[
exp

(
−i

p`

h

)
+ exp

(
i

p`

h

)]
,

sI ≡ 1

2i

[
exp

(
−i

p`

h

)
− exp

(
i

p`

h

)]
. (34)

Therefore, the unitary operators may also be regarded as an observable. It is
important to note that this is anonlocalobservable, unlikep.

This nonlocality in quantum mechanics may also be illustrated in the simple
interference experiment of two coherent wave packets. Suppose that the two wave
packets are moving in thex direction and have no overlap at timet . For simplicity,
assume that they are the same except that their centers are separated by a displace-
ment` in they direction. Letα be the phase difference between the wave packets.
The wave is then a superposition of these two wave packets:

ψ(x, y, z, t) = 1√
2
{φ(x, y− `, z, t)+ eiαφ(x, y, z, t)}. (35)

Now no local experiments performed on the two wave packets at the two slits
could determine the phase factoreiα. For example, the expectation values of the
local variablespn, wheren is any positive integer, give no information abouteiα

(Aharonovet al., 1969). This is easily verified by writingpn = (−i h ∂
∂y )n in the

coordinate representation. But

〈ψ | exp

(
−i

p`

h

)
|ψ〉 = eiα

2
. (36)

This means that the momentum distribution at timet does depend on the phase
factoreiα, i.e. if p is measured then the probability distribution for obtaining the
individual eigenvalues ofp is changed by this phase factor (but the average〈p〉 is
unchanged). And this may be experimentally verified by letting the wave packets
interfere and observing the shift in interference fringes. Hence,〈ψ | exp(−i p`

h )|ψ〉
contains more information than the expectation values〈ψ |pn|ψ〉 of any of the
moments of momentumpn. This is basically due to the linear structure of the
Hilbert space, which physically corresponds to the principle of superposition, and
the fact thatψ is not an analytic function.

This fundamental nonlocality of quantum mechanics translates into a non-
locality of the effect of all the fundamental interactions on the wave function.
This has been shown for the Aharonov–Bohm effect due to a magnetic field by
Aharonovet al. (1969). It may be illustrated in the above described interference
of two wave packets as follows. Suppose the above two wave packetsA and B
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Fig. 1. Vector Aharonov–Bohm effect in which a wave packet of an electron is split coherently into
two wave packets at the beam splitterM and then made to interfere atI . When the imaginary line
joining the centers of the wave packetsA and B sweeps across the magnetic flux in the solenoid
(shaded region) the modular momentum or the modular kinetic momentum associated with this line
changes, as pointed out by Aharonov (private communication).

are those of an electron and they pass on the two sides of a solenoid containing a
magnetic flux8. The gauge may be chosen so that the vector potential is nonzero
only along a thin strip bounded by two planes indicated by the dotted lines in Fig. 1.
Then when the lineAB passes the solenoid, the wave packetA acquires a phase
differenceα = e

hc8with respect to the wave packetB. Therefore, the expectation
value of the modular momentums, given by (36), which was12 before the line
AB passed the solenoid is now exp(i e

hc8)/2. It was pointed out by Aharonov
(private communication) that in the last statements may be replaced by the gauge-
invariant modular kinetic momentumf` given by (8). This is because before and
after the wave packets pass the solenoid the vector potentialA is zero along the
line AB, and thereforef` is the same ass. Since f` is gauge-covariant,〈ψ | f`|ψ〉
is gauge-invariant. Hence, the above-mentioned change in〈ψ | f`|ψ〉 by the factor
exp(i e

hc8), as the lineAB crosses the solenoid, is the same in every gauge.
However, we may replacef` in the above arguments by the more gen-

eral gauge-covariant operatorgγ given by (18) withγ here being an arbitrary
(piecewise-differentiable) spacelike curve that joinsA andB. Then

gγ (x) = exp

(
− i

h
p̂ · `

)
exp

{
i
e

h

∫ x+`

γ x
A(y, t) · dy

}
, (37)

where the integral is fromx to x+ ` alongγ . Hence,

〈ψ |gγ |ψ〉 =
∫

d3xψ†(x+ `, t) exp

{
i
e

h

∫ x+`

γ x
A(y, t) · dy

}
ψ(x, t), (38)
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which is gauge-invariant. Then〈ψ |gγ |ψ〉 changes by the factore±i e
hc8 as a por-

tion of γ crosses the solenoid. It follows that there is nothing special about the
straight lineAB crossing the solenoid in the experiment described in Fig. 1. The
arbitrariness of the choice ofγ joining A and B in the above argument reflects
the topological nature of the Aharonov–Bohm effect. What is ultimately observed
in this effect is the phase factor exp(−i e

h

∮
Aµ dxµ) where the integral is around

the solenoid or more generally around the region in which the field strength is
nonvanishing. Since this is an integral of the 1-formAµ along a curve, it contains
no information about the metric of space–time.4 To determine the straight line, or
a geodesic in general, the metric is needed, and the above phase factor therefore
cannot show any preference to a geodesic such as the lineAB. The integrand of
(38) (withe replaced by 2e) was previously used in Ref. (Anandan, 1986) to study
the Josephson effect due to the enclosed magnetic flux in a superconducting ring
that has a Josephson junction, which is also an Aharonov–Bohm effect.

Consider now the scalar Aharonov–Bohm effect. A wave packet traveling in
thex direction is partially transmitted and reflected by a beam splitterM (Fig. 2(a)).
The two resulting wave packets, which travel in opposite directions, are reflected
by two mirrorsM1 andM2 situated along thex axis and they interfere subsequently.
Meanwhile a pair of oppositely charged capacitor platesC is separated and closed
so that there is a nonzero electric field in the region enclosed by the worldlines of
the centers of the wave packets in thext plane. The same experiment is viewed in
the rest frame of the reflected wave packet in Fig. 2(b).

We may choose a gauge in which the vector potential is nonzero only along
a strip between the dotted lines parallel to the time axis in Fig. 2(a) or 2(b). Then
the wave packetA at timet + τ develops a phase shiftβ with respect toB at time
t as the imaginary lineAB crosses the space–time region containing the electric
field, where

β = e

h

∫
C

F0x dx dt (39)

andC is the region in which the electric fieldE = F0x is nonzero. This is a nonlocal
effect, which may be understood usingU = {T exp(− i

h

∫ τ
0 H dt)}†, whereT

denotes time ordering andτ is the time interval between the eventsA1 andB1. We
shall assume that the time dependence ofH comes only from the vector potential
contained inH . Suppose the wave function of the electron is

ψ = 1√
2

(ψA + ψB),

4 This explains why in the nonrelativistic limit for the charged particle, the Ahaonov–Bohm phase shift
that it experiences due to the phase factor exp(−i e

h

∮
Aµdxµ) remains the same. This is because

the latter phase factor is unaffected by the change in the space–time metric that takes place in the
nonrelativistic limit.
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Fig. 2. A scalar Aharonov–Bohm effect shown schematically in thetxplane. (a) The modular energy
and modular kinetic energy associated with the imaginary linesP1Q1 andP2Q2 are different, partly
because of the scalarAB phase shift due to the region of nonzero electric field in the capacitor that
is open and shut (shaded region). (b) The same experiment viewed in the rest frame of the wave
packet that is reflected at the beam splitterM . When the imaginary lineAB joining the wave packets
sweeps across the region of nonzero electric field in the capacitor the modular energy and modular
kinetic energy associated with this line changes because of theAB phase shift.

whereψA andψB are the wave functions of the above two localized wave packets.
Then

〈ψ(t)|U |ψ(t)〉 = 1

2
〈ψA(t)|U |ψB(t)〉 = 1

2
〈ψA(t + τ ) | ψB(t)〉 (40)

changes by the factoreiβ due to the electric fieldE in the regionC as the
imaginary line AB sweeps across the small regionC where E is nonzero
(Fig. 2(b)).

In the last statement and in (40) we may replaceU by the gauge-covariant
modular kinetic energy operatorfτ given by (14), withe replacingq. This is be-
causeA0 is zero alongA1B1 andA2B2, which are outside the strip that contains the
nonzeroAµ. However,〈ψ(t)| fτ |ψ(t)〉 is gauge-invariant and therefore its change
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mentioned above may be obtained in any gauge. But since there are no forces
acting on the electron, there is no change of its kinetic energyH − eA0 or any
of its moments. Hence,〈ψ(t)| fτ |ψ(t)〉 contains nonlocal aspects that cannot be
obtained by measurements of the kinetic energy operator or any of its moments.
Thus the scalar Aharonov–Bohm effect may be viewed as a quantum effect that is
nonlocal in time.

The above results are easily generalized to the Aharonov–Bohm effects due to
non-Abelian gauge fields (Anandan, 1979) by replacing the electromagnetic fluxes
by fluxes of Yang–Mills field strength, and using the expectation values (22) of
the gauge-covariant operatorgγ given by (18). In all cases, the gauge-invariant
〈ψ |gγ |ψ〉 changes asγ passes a cross-section of the gauge field flux. If the gauge
field flux has a singular cross-section, thenγ passes the flux at an event, which of
course is independent of the inertial frame in which the effect is being described,
but depends on the choice ofγ . Whenγ passes this event, in this idealized case,
〈ψ |gγ |ψ〉 changes to〈ψ |gγ P exp{−i g0

h

∮
C Ak

µ(y)Tk dyµ}|ψ〉, whereC is a closed
curve going around the Yang–Mills flux.

The group element (18) belongs to the groupT4× G, where for a closed
systemT4 is the translation group andG is the gauge group. But it has an asymmetry
in that the part of (18) that belongs toG is dynamical, whereas the part that belongs
to T4 is fixed. Since I proposed that the fundamental interactions should correspond
to the universal group element (18) being dynamical, consistency requires that the
part of (18) that belongs toT4 should be dynamical as well, i.e.`µ should be made
dynamical. But the classical spacetime geometry was constructed in Section 4 using
the latter group elements. It follows therefore that making`µ dynamical would
make the space–time metric dynamical and not fixed as it is in Minkowski space–
time. Therefore, the interaction that corresponds to making theT4 group elements
dynamical gives, in the classical limit, the well-known geometrical description of
gravity in classical general relativity. A generalization of it is obtained by replacing
T4 with Tn, wheren is any positive integer. Thus the present approach requires the
existence of gravity.

I now give a simple illustration of the above unified way of treating gravity and
gauge fields by considering the gravitational analog of the above vector Aharonov–
Bohm effect. The geometry surrounding a cosmic string in the two dimensional
section normal to the axis of the string at a given time is that of a cone whose
center is at the axis, which is seen by solving the classical gravitational field
equations (Anandan, 1996). The space–time geometry of a nonrotating cosmic
string is obtained by simply adding to this plane the extra dimension in the direction
of the axis and the time dimension; then the curvature outside the string is zero
everywhere (Fig. 3). It is known that this geometry is similar to the electromagnetic
field around a solenoid because the curvature is zero outside the string and yet there
is a nontrivial holonomy around it.
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Fig. 3. A gravitational analog of the experiment in Fig. 1. The conical geometry around a cosmic
string that is normal to the plane throughS is represented by cutting off the wedgeAS A′ from flat
space and identifying the planes along which it is cut. The wave packets moving atA (same asA′) and
B are focused by this geometry to interfere atI . Just beforeAB crossesS, there are two geodesics
connectingA andB of lengths̀ and` cos(θ/2) in the curvature-free region. But just after the crossing
there is a unique geodesicA′B of length` cos(θ/2) joining A andB.

Consider now two wave packets separated by a distance` and whose centers
move along initially parallel lines such that the geodesic lineAB joining the centers
meets the conical singularityS at its midpoint. But there is another geodesic that
connects the same pair of pointsA andB of length` cos(θ/2), shown by the line
A′B in Fig. 3, whereA′ is identified withA. (Actually, there are two geodesics
connectingA and B when the angleAŜB on the left side exceedsπ − θ but is
less thanπ . The corresponding anglesAŜB on the right side areπ andπ − θ ,
respectively. The singularity may be replaced by a small smooth cap that merges
with the rest of the cone smoothly. Then there would be a third geodesic joining
A andB through this cap.)

Just afterAB crosses the conical singularity, there is only one geodesic join-
ing A and B, whose length is̀ cos(θ/2). This is somewhat analogous to the
change in modular kinetic momentum whenAB crosses the solenoid in Fig. 1,
because exp(−i p · `) now translates locally along parallel geodesic line segments
of length`, and this length has gotten shorter after the crossing.

In Fig. 4, this result is generalized to the case ofSnot being the midpoint of
the geodesicASB, and it is also seen to be “gauge” independent in the sense of
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Fig. 4. A generalization of the gedanken experiment shown schematically in
Fig. 3 to unequal lengths AS= `1 and BS= `2. The wedgeDSD′ has an
arbitrary orientation. But sinceSCand SC′ are identified, andα + β = π in
order for ACB to be a geodesic, the distances along the geodesicsASBand
ACBare respectivelỳ1 + `2 and (̀ 2

1 + `2
2 + 2`1`2 cosθ )1/2, as shown in (b),

independently of the orientation of the wedge.

being invariant under the rotation of the “wedge” mentioned above. There is then
a phase shift1φ due to the difference in path lengths traveled by the wave packets
given by

1φ = p0

h
(d1− d2) ' p0

2h
(`2− `1)θ = 4πGµ

p0

h
(`2− `1) (41)

for small θ , whered1 andd2 are the path lengthsAI and BI , µ is the mass per
unit length of the cosmic string, andp0 is the initial momentum of the particle. If
the particle carries spin, then there is also a phase shift because of the coupling of
spin to the curvature.

This and other phase shifts for interference of two wave packets around a
cosmic string are studied elsewhere and are understood as being due to the Poincare
holonomy around the string (Anandan, 1994, 1996). In the present approach, these
phase shifts may be understood by associating with each curve an element of the
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Poincare group element (Anandan, 1999) whose expectation value changes as the
curve crosses the cosmic string.

6. DISCUSSION AND CONCLUSION

The change in geodesic distances between the wave packets due to the cosmic
string, in Section 5, is not surprising because gravity changes distances, according
to general relativity, and the cosmic string is a purely general relativistic object
without a Newtonian analog. What may be more interesting is the similar change
of the “quantum distances” due to the electromagnetic field in the usual Aharonov–
Bohm effect and its generalization to non-Abelian gauge fields. Both these effects
may be treated in a somewhat analogous manner if the modular kinetic energy–
momentum (18), regarded here as universal group elements, may be interpreted
as “distances” in a quantum geometry as proposed earlier. The fact that space–
time distances may be obtained from them approximately, as shown in Section 4,
reinforces this view.

The treatment of (18) as an observable, which implies the above-mentioned
nonlocal effects in quantum theory, perhaps removes the mystery of why although
the interactions are local as they occur in the Hamiltonian or Lagrangian, there are
nevertheless nonlocal effects such as the Aharonov–Bohm and its generalizations
to non-Abelian gauge fields and gravitation.5

A criticism that may be made against regarding the universal group elements
(18) as quantum distances is that their action on wave functions seems to require that
γ̂ be interpreted as a set of space–time curves, whereas it was argued in Section 3
that space–time geometry is not appropriate for quantum theory. However, as dis-
cussed in that section, this limitation becomes critical only at the Planck scales.
But at the Planck scale these group elements need not be associated with curves
in space–time. They may be defined simply as operators acting on quantum states
defining the quantum geometry and representing the fundamental interactions.
Thus it is possible to have a quantum geometry even at scales in which the space–
time geometry breaks down and this would also give a quantum description of all
the interactions.
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